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Small scale validation cont’d
• We can also directly examine changes due to OR1 knock-out

Preliminary validation
• The λ-phage (bacteria infecting virus)!"#$%&'#($)*#+,-./
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• We can find the equilibrium of the game (binding frequencies)
as a function of overall protein concentrations.
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(a) OR3

10
!2

10
0

10
2

0

0.2

0.4

0.6

0.8

1

Binding in O
R

2

f
repressor

/f
RNA

B
in

d
in

g
 F

re
q

u
e

n
c
y
 (

ti
m

e
!

a
v
e

ra
g

e
)

Repressor
RNA!polymerase

(b) OR2
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(c) OR1

Figure 3: Predicted protein binding to sites OR3, OR2, and mutated OR1 for increasing amounts of cI2.

became sufficiently high do we find cI2 at the mutated
OR1 as well. Note, however, that cI2 inhibits transcrip-
tion at OR3 prior to occupying OR1. Thus the binding
at the mutated OR1 could not be observed without in-
terventions.

7 Discussion

We believe the game theoretic approach provides a com-
pelling causal abstraction of biological systems with re-
source constraints. The model is complete with prov-
ably convergent algorithms for finding equilibria on a
genome-wide scale.

The results from the small scale application are en-
couraging. Our model successfully reproduces known
behavior of the λ−switch on the basis of molecular
level competition and resource constraints, without the
need to assume protein-protein interactions between cI2
dimers and cI2 and RNA-polymerase. Even in the con-
text of this well-known sub-system, however, few quan-
titative experimental results are available about bind-
ing. Proper validation and use of our model therefore
relies on estimating the game parameters from available
protein-DNA binding data (in progress). Once the game
parameters are known, the model provides valid pre-
dictions for a number of possible perturbations to the
system, including changing nuclear concentrations and
knock-outs.
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• Predictions are again qualitatively correct
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MAP in Undirected Graphical Models
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Real-world problems:

Protein design

Stereo vision

Find most likely assignment:



How to solve MAP?

  MAP is known to be NP-hard (e.g., MAP on binary
 MRFs is equivalent to Max-Cut)

  Real-world MAP problems are not necessarily as
 hard as theoretical worst case



How to solve MAP?

  New toolkit: Message-passing algorithms based on
 linear programming relaxations�
(Schlensinger ’76, Kolmogorov & Wainwright ‘05, Vontobel & Koetter ‘06,
 Johnson et al. ’07, Komodakis et al. ‘07, Globerson & Jaakkola ’08…)

  Solves exactly when LP relaxation is tight:�
trees, binary submodular MRFs, and matchings

  In practice, we seldom have these structures

  By tightening the relaxation (problem specific), we
 can solve hard real-world problems, exactly



We can formulate the MAP problem as a linear program

MAP as a linear program

The marginal polytope constrains the      to be marginals of some 
distribution:

Very many constraints!Obj.

xmap

Vertices correspond to assignments

where the variables       are defined over edges.



Relaxing the MAP LP



Relaxing the MAP LP

Such that�

Simplest outer bound:

Relaxation

MAP
Objective
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Such that�

Relaxation

MAP
Objective

1 2 3 

4 5 6 

7 8 9 



Partial pairwise�
consistency} 

Tightening the LP

Such that�

Relaxation

MAP
Objective

1 2 3 

4 5 6 

7 8 9 



j

i

k
Pairwise�
consistency} 

Tightening the LP

Such that�

Relaxation

MAP
Objective

…



j

i
k } Triplet�

consistency

Tightening the LP

Such that�

Relaxation

MAP
Objective

……



Tightening the LP

Such that�

Relaxation

MAP
Objective

……

} Quadruplet �
consistency

j

i
k

l



Tightening the LP

Such that�

Relaxation

MAP
Objective

……

  Can we efficiently solve the LP?

  What clusters to add?

  How do we avoid re-solving?

Great! But…

Might be “lucky”�
and solve earlier



Our solution

  Can we efficiently solve the LP?
  We work in one of the dual LPs (Globerson & Jaakkola ‘07)

  Dual can be solved by an efficient message-passing algorithm
  Corresponds to coordinate-descent algorithm

  What cluster to add next?
  We propose a greedy bound minimization algorithm
  Add clusters with guaranteed improvement – upper bound gets tighter

  How do we avoid re-solving?
  “Warm start” of new messages using the old messages

Dual

PrimalMAP
Obj.



Dual algorithm

Iteration

2.  Decode assignment from messages

MAP

Dual

Objective

1.  Run message-passing

4.   Warm start: initialize new cluster messages
3.  Choose a cluster to add to relaxation

Is gap (dual obj – assignment val) small?

Integer solution

Messages

Done! No.

Same objective value 



Dual algorithm



What cluster to add next?

Iteration

MAP

Dual

Objective

Full decrease due to clusterOne full iteration with clusterOne outgoing message from cluster



What cluster to add next?

1 2 

3 



What cluster to add next?

if
otherwise

1 2 

3 

If dual decreases, there was frustration
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Coarsened cluster consistency

  Each new cluster requires adding a large number of LP
 variables                       and constraints

  Is it possible to use just a subset of these constraints?

  We give a new class of sparse cluster constraints, enforcing
 consistency on coarsened variables 

(Sontag, Globerson, Jaakkola, NIPS ‘08) 

µijk(xi, xj , xk)



Experiments: Protein design

  Given protein’s 3D shape, choose amino-acids giving the most stable 
structure

  Each state corresponds to a choice of amino-acid and side-chain angle
  MRFs have 41-180 variables, each variable with 95-158 states
  Hard to solve

  Very large treewidth
  Many small cycles (20,000 triangles) and frustration

θih(xi, xh)

θjk(xj, xk)
θik(xi, xk)

xi

xk
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Protein backbone

Side-chains

(MRFs from Yanover, Meltzer, Weiss ‘06)



Primal LP, pairwise, is large

(Yanover, Meltzer, Weiss, JMLR ‘06)

CPLEX can only run on 3:�
must move to dual!



  Pairwise constraints solve only 2 of the 97 proteins

  Iteratively tightening relaxation with triplets, we exactly 
solve 96 of the 97 proteins (!!!)

  Using the coarsened clusters, average time to solve 15 
largest proteins is 1.5 hours

  Bound criterion finds the right constraints: Only 5 to 735 
triplets needed to be added per problem

Protein design results



Coarsening clusters really helps
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Related Work

  Similar ideas can be done directly in the primal
  Selection criteria of constraint violation instead of bound minimization

  (Sontag & Jaakkola ’08)

  Can also be applied to marginals
  Guidance by bound on partition function rather than MAP value
  Similar to region-pursuit algorithm for generalized BP (Welling 

UAI ’04)



Conclusions & Future Work

  New toolkit of message-passing algorithms based on dual LP 
relaxations�
      +�
Iterative tightening of LP relaxation�
      =�
Ability to solve interesting real world-problems

  More generally, when can we expect these MAP inference 
techniques to be successful?

  How should we do learning with approximate inference – in 
particular, with LP relaxations?


